A maltose transporter from apple is expressed in source and sink tissues and complements the Arabidopsis maltose export-defective mutant.

نویسندگان

  • Edwin J Reidel
  • Robert Turgeon
  • Lailiang Cheng
چکیده

Prior to the cytosolic synthesis of transport sugars during transitory starch utilization, intermediate products of starch breakdown, such as maltose, must be exported from chloroplasts. Recent work in Arabidopsis indicates that a novel transporter mediates maltose transfer across the chloroplast inner envelope membrane. We cloned a gene from an apple cDNA library that is highly homologous with the Arabidopsis maltose transporter, MEX1. Expression levels of MdMEX determined by real-time PCR were low in the tips of growing shoots, higher in expanding leaves and maximal in mature leaves. Expression was also detected in fruits and roots, indicating a role for MdMEX in starch mobilization in sink tissues. The cDNA from apple was subcloned into an expression cassette between the cauliflower mosaic virus 35S promoter and the sGFP (green fluorescent protein) coding sequence. Plants of the Arabidopsis maltose excess1-1 mutant, which is homozygous for a defective MEX1 allele, were transformed with the 35S:MdMEX:GFP construct. Fluorescence of GFP was localized to chloroplasts, indicating that Arabidopsis recognized the predicted 55 amino acid chloroplast transit peptide in the apple protein. The phenotypes of several independently transformed lines were analyzed. The complemented plants were relieved of the severe stunting and chlorosis characteristic of mex1-1 plants. Furthermore, starch levels and concentrations of soluble sugars, leaf chlorophyll content and maximum quantum efficiency of PSII were restored to wild-type levels. MdMEX (Malus domestica maltose transporter) is the second member of the unique maltose transporter gene family.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PmSUC3: characterization of a SUT2/SUC3-type sucrose transporter from Plantago major.

Higher plants possess medium-sized gene families that encode plasma membrane-localized sucrose transporters. For several plant species, it has been shown that at least one of these genes (e.g., AtSUC3 in Arabidopsis and LeSUT2 in tomato) differs from all other family members in several features, such as the length of the open reading frame, the number of introns, and the codon usage bias. For t...

متن کامل

Intracellular maltose is sufficient to induce MAL gene expression in Saccharomyces cerevisiae.

The presence of maltose induces M4L gene expression in Saccharomyces cells, but little is known abouthow maltose is sensed. Strains with all maltose permease genes deleted are unable to induce MAL geneexpression. In this study, we examined the role of maltose permease in maltose sensing by substituting a heterologous transporter for the native maltose permease. PmSUC2 encodes a sucrose transpor...

متن کامل

Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation.

The Arabidopsis (Arabidopsis thaliana) sucrose transporter AtSUC1 (At1g71880) is highly expressed in pollen; however, its function has remained unknown. Here, we show that suc1 mutant pollen is defective in vivo, as evidenced by segregation distortion, and also has low rates of germination in vitro. AtSUC1-green fluorescent protein was localized to the plasma membrane in pollen tubes. AtSUC1 is...

متن کامل

Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis.

The maltose transporter of Saccharomyces cerevisiae is rapidly degraded during fermentation in the absence of a nitrogen source. The location and mechanism of degradation of the transporter have been investigated. Using mutants defective in endocytosis, we have shown that degradation of this transporter requires internalization by endocytosis. In addition, studies of mutants defective in protea...

متن کامل

Daylength and circadian effects on starch degradation and maltose metabolism.

Transitory starch is stored during the day inside chloroplasts and broken down at night for export. Maltose is the primary form of carbon export from chloroplasts at night. We investigated the influence of daylength and circadian rhythms on starch degradation and maltose metabolism. Starch breakdown was faster in plants of Arabidopsis (Arabidopsis thaliana) ecotype Wassilewskija growing in long...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 49 10  شماره 

صفحات  -

تاریخ انتشار 2008